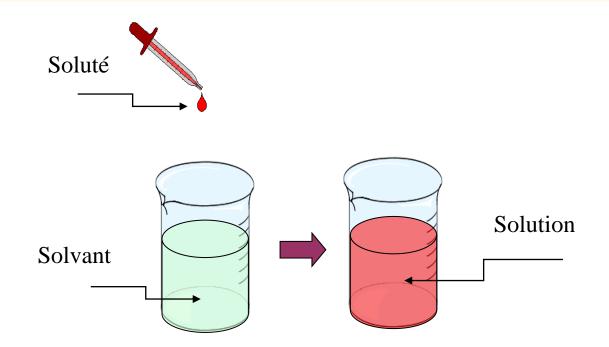
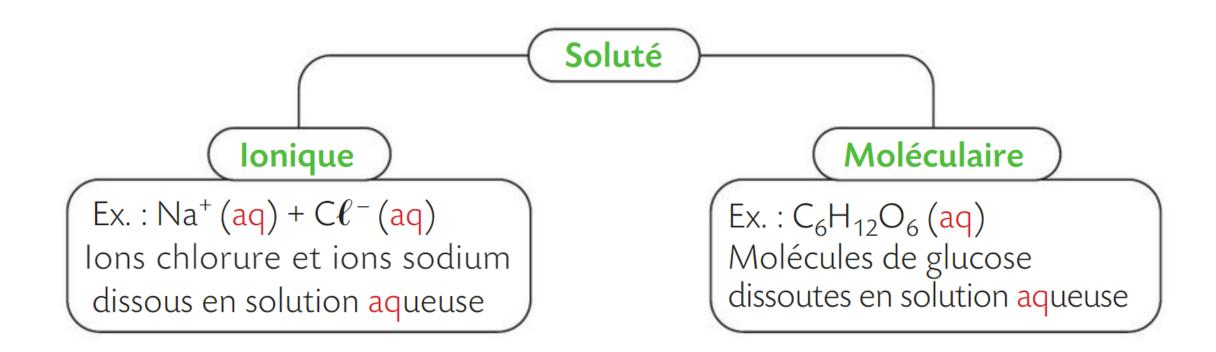
Cours Les solutions aqueuses livre p°29



1 Les solutions

a. Solution, soluté et solvant

- Une solution est obtenue lorsqu'on introduit une espèce chimique dans un solvant, l'ensemble formant un mélange homogène.
- Les espèces chimiques dissoutes dans le solvant sont les solutés.



Lorsque le solvant est l'eau, la solution est appelée solution aqueuse (photographie (A)).

b. Des ions ou des molécules en solution

Les solutés peuvent être des espèces ioniques et/ou moléculaires.

2 La concentration en masse

• La concentration en masse, ou titre massique, t d'une solution en une espèce chimique dissoute est le quotient de la masse m_{soluté} de soluté par le volume V_{solution} de la solution :

$$t = \frac{m_{\text{solut\'e}}}{V_{\text{solution}}}$$

$$t = \frac{V_{\text{solution}}}{V_{\text{solution}}}$$

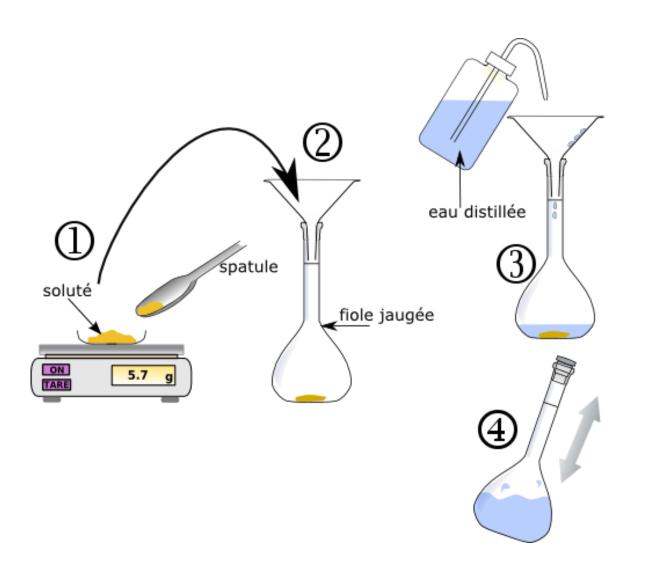
Exemple : La concentration en masse en glucose t d'une solution de volume $V_{\text{solution}} = 500 \text{ mL}$ contenant une masse $m_{\text{glucose}} = 2.5 \text{ g}$ de glucose dissous est :

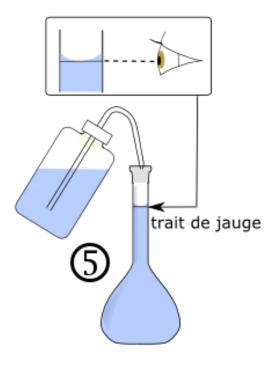
$$t = \frac{m_{\text{glucose}}}{V_{\text{solution}}} = \frac{2.5 \text{ g}}{500 \times 10^{-3} \text{ L}} = 5.0 \text{ g} \cdot \text{L}^{-1}$$

• La masse volumique ρ_{solution} d'une solution et la concentration en masse $t_{\text{soluté}}$ d'un soluté s'expriment dans la même unité, mais ces deux grandeurs sont différentes

$$\rho_{\text{solution}} = \frac{m_{\text{solution}}}{V_{\text{solution}}}$$

$$t_{\text{soluté}} = \frac{m_{\text{soluté}}}{V_{\text{solution}}}$$

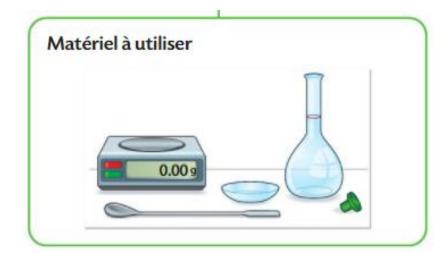

Exemple: À 20 °C, une solution aqueuse de concentration en masse en saccharose $t = 216,2 \text{ g} \cdot \text{L}^{-1}$ a une masse volumique $\rho_{\text{solution}} = 1 081 \text{ g} \cdot \text{L}^{-1}$.


1 Les préparations de solutions

a. Par dissolution

- Une dissolution est l'obtention d'une solution par mélange d'un solvant et d'une espèce chimique.
- Les étapes à suivre pour préparer une solution par dissolution d'un solide sont :

https://youtu.be/b3V6X3IfQTc

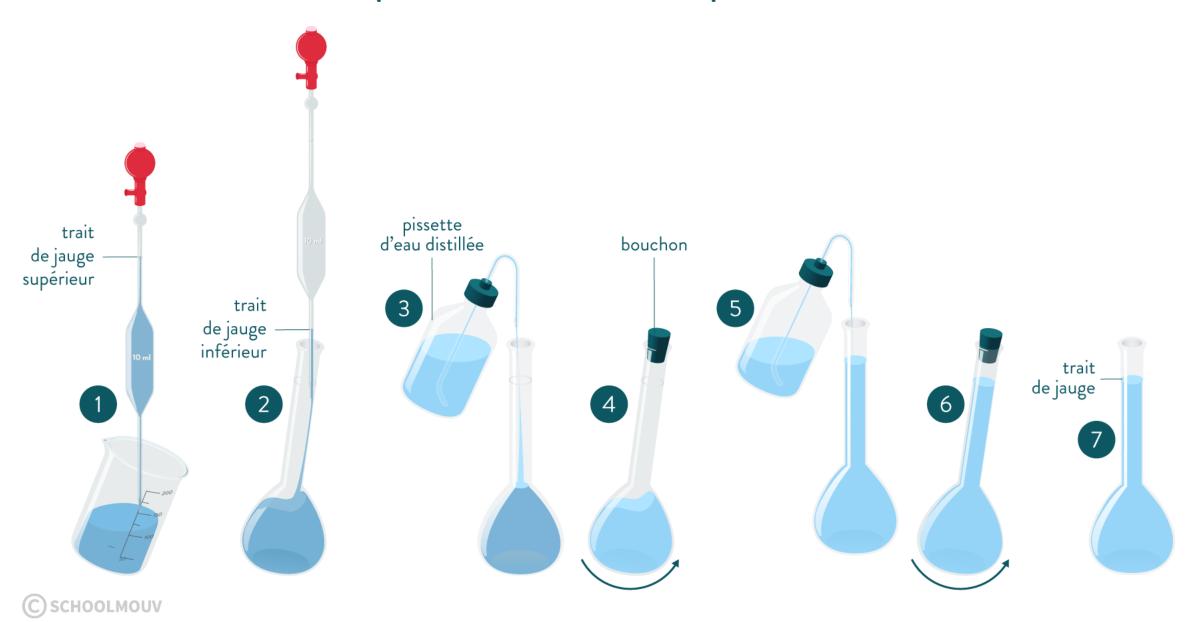


Par dissolution d'une espèce chimique

Une **dissolution** est la mise en solution d'une espèce chimique dans un solvant.

Masse de l'espèce à prélever :

$$m = t \times V_{\text{solution}}$$


b. Par dilution

• La dilution d'une solution aqueuse est l'ajout d'eau à cette solution. La solution obtenue (solution fille) est moins concentrée que la solution initiale (solution mère).

https://youtu.be/6cNAmn2Owoo

• Les étapes à suivre pour diluer une solution mère sont :

Préparation d'une solution par dilution

• Au cours d'une dilution, la masse de soluté $m_{\rm m}$ prélevé dans la solution mère est égale à la masse de soluté $m_{\rm f}$ présent dans la solution fille :

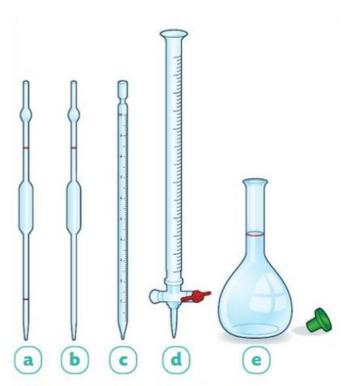
$$m_{\rm m} = m_{\rm f}$$

donc: $t_{\rm m} \times V_{\rm m} = t_{\rm f} \times V_{\rm f}$

• On demande souvent de diluer F fois une solution.

F s'appelle **facteur de dilution** et s'écrit :

$$F = \frac{t_{\rm m}}{t_{\rm f}}$$
 ou $F = \frac{V_{\rm f}}{V_{\rm m}}$


Comme $t_f < t_m$, le facteur de dilution F est toujours supérieur à 1.

Exemple : Pour diluer 5 fois une solution mère de concentration en masse $t_{\rm m} = 10.0~{\rm g \cdot L^{-1}}$ et obtenir un volume $V_{\rm f} = 100.0~{\rm mL}$ de solution fille, le volume de solution mère à prélever est :

$$V_{\rm m} = \frac{V_{\rm f}}{F} = \frac{100,0}{5} = 20,0 \text{ mL}$$

La concentration en masse de la solution fille obtenue est :

$$t_{\rm f} = \frac{t_{\rm m}}{F} = \frac{10.0}{5} = 2.0 \text{ g} \cdot \text{L}^{-1}$$

- > Verrerie de précision pour la préparation de solution :
- a pipette jaugée à 2 traits de jauge
- b pipette jaugée à 1 trait de jauge
- c pipette graduée
- **d** burette graduée
- e fiole jaugée et bouchon

Les dosages à l'aide d'une gamme d'étalonnage

• Pour déterminer la concentration en masse *t* en une espèce E d'une solution S :

On dispose:

Exemple

- d'une solution S de concentration
 en masse t en une espèce E;
- de plusieurs solutions étalon dont on connaît les concentrations en masse $(t_1, t_2, t_3, \text{ etc.})$ en une espèce E.

On compare une grandeur physique ou une caractéristique de la solution S avec la même grandeur ou caractéristique de solutions étalon.

$$t_3 < t < t_4$$