TP configuration électronique – formation des ions et des molécules

Objectifs du TP : Utiliser un programme en python et des modèles moléculaires pour interpréter la formation des ions et des molécules

On utilise un programme en python pour trouver la configuration électronique, la masse du noyau, la masse de l'atome.

Ouvrir le logiciel ANACONDA puis SPYDER

Copier le programme « elementschimiques1.py » dans SPYDER

Soit les noyaux atomiques de carbone $^{12}_{6}C$, oxygène $^{16}_{8}O$, chlore $^{35}_{17}Cl$, aluminium $^{27}_{13}Al$, magnésium $^{24}_{12}Mg$, sodium $^{23}_{11}Na$, hydrogène $^{1}_{1}H$, azote $^{14}_{7}N$

I. Formation des ions (cations et anions)

L'élément aluminium, l'atome d'aluminium et l'ion aluminium
En utilisant le programme, retrouver la configuration électronique de l'atome d'aluminium
Quel ion va donner l'atome d'aluminium ? car
Quelle est sa colonne dans la classification périodique ?
Quelle est sa période dans la classification périodique ?
Quelle est la masse de l'atome d'aluminium ?
Comment pouvez-vous retrouver sa masse ? Donner la formule littérale
Pourquoi y a-t-il une différence entre la masse de l'atome est la masse du noyau ?
L'élément chlore, l'atome de chlore et l'ion chlorure
En utilisant le programme, retrouver la configuration électronique de l'atome de chlore
Quel ion va donner l'atome de chlore? car
Quelle est sa colonne dans la classification périodique ?
Quelle est sa période dans la classification périodique ?
II. Formation des molécules
L'élément hydrogène, l'atome d'hydrogène et la molécule de dihydrogène
En utilisant le programme, retrouver la configuration électronique de l'atome d'hydrogène
Combien d'électrons va mettre en commun l'atome d'hydrogène pour former une molécule ?car
Quelle est sa colonne dans la classification périodique ?
Quelle est sa période dans la classification périodique ?

Représenter la formule de Lewis de la molécule de dihydrogène							
Représenter la molécule de dihydrogène avec la boite de modèles moléculaires							
Atome	Carbone	Hydrogène	Oxygène	Chlore	Azote		

III. Bilan

Les atomes, les liaisons qu'ils forment et les doublets non liants qu'ils comportent

Symbole, atome	Numéro atomique Z	Configuration électronique	Nombre d'électrons de valence	Combien de liaisons dans molécule ?	Combien de doublet non liant dans molécule ?
H hydrogène					
C carbone					
O oxygène					
N azote					
Cl chlore					

Quelques molécules simples

Nom de la molécule	Formule brute	Formule de Lewis
Dioxyde de carbone	CO ₂	
méthane	CH ₄	
éthane	C ₂ H ₆	
ammoniac	NH ₃	
Chlorure d'hydrogène	HCl	